CO₂ Utilization

Kaitlyn Hansen Joseph Hernandez James Shelton April 21, 2015

Carbon Dioxide (CO₂) Uses

Emerging Industrial Uses of CO₂

Carbon Dioxide (CO₂) Uses cont.

Existing Industrial Uses of CO₂

Carbon Dioxide (CO₂) Uses cont.

Existing Industrial Uses of CO₂

Outline

- Supercritical Fluids
- Decaffeination
- Beverage Carbonation
- Cryogenic Freezing
- Water Treatment

Supercritical Fluids

Phase Diagram of Carbon Dioxide

What Is Supercritical Carbon Dioxide? Applied Separations, Inc., 5 Aug. 2010. Web. 21 Apr. 2015.

"The World According to Supercritical Fluids"

HELP! It's A critical Fluid !! I can do all the things you guys can, and more...

You're nothings!

Supercriticality

At the initial condition the liquid and vapor phase coexist.

...therefore, the lighter green floater swims on the supercritical phase, while the heavier red floater sinks to the bottom.

CO₂ vs. Other Supercritical Fluids

Solvent	Critical Temperature (°C)	Critical Pressure (bar)
Carbon Dioxide	31.1	73.8
Chlorotrifluoromethane	28.9	39.2
Propane	96.7	42.5
Cyclohexane	280.3	40.7
Toluene	318.6	41.1
Perchloroethylene	347	47.6
Methylene Chloride	237	61
Water	374.2	220.5

Dry Cleaning

 \bullet

- Spray Paint
- **Coffee Decaffeination** ightarrow

- Perchloroethylene \bullet
- Chlorofluorocarbon or propane
- Water, Methylene Chloride

Choose CO₂ as a SC Fluid

- Safe, environmentally friendly
- Recyclable
- Inexpensive/readily available
- No residue
- Mild conditions for supercriticality
- Tunable
- Servicing the environment by using CO₂

Venus's atmosphere is 96.5% CO_2 and the average temperature and pressure are 467°C & 93 bar, meaning the atmosphere on Venus is made up of supercritical $CO_2!$

Market for Coffee

- The coffee industry is valued at \$100 billion annually; \$19 billion just in the US
 - Largest worldwide commodity after crude oil
- Worldwide, we drink 500 billion cups of coffee per year
- Decaffeinated coffee accounts for about 12% of worldwide consumption
- Certified coffee farms dropped from 43% to 24% between 1996 and 2010 because of demand
- There are about 1,200 chemical compounds in coffee with about half contributing to flavor

Coffee Decaffeination

Caffeine Molecule

 Caffeine is a nonpolar, hydrophilic molecule

- Water as a solvent
- Organics as solvents
- Supercritical CO₂ is tunable
 - Selectively dissolve caffeine
 - Increasing pressure increases the density and makes the supercritical CO2 simulate greater polarity

Water as a Solvent—Swiss Water Process

Fig. 1. Conventional 'water process' for decaffeination of coffee beans.

• Uses clean water

Reference: at end of presentation

• Wastes a set of coffee beans

Beans amount to 95% of cost • Water waste is a major source of "antigreenness"

Table 2.1 Physical input/output table for 1 ton of green bean input (simplified)				
Input		Output		
Item	Physical amount	Item	Physical amount	
Green beans	1,000 kg	Green beans grade A	430 kg	
Water	0.035 m ³	Green beans grade B	370 kg	
Electric energy	40 kWh	Green beans grade C	60 kg	
		Green beans grade D	55 kg	
		Green beans for local market	75 kg	
		Dust	2 kg	
		Weight loss	8 kg	
		Waste water	0.035 m ³	

Table 2.1 Divised input/output table for 1 top of grass been input (simplified)

Supercritical CO₂ Decaffeination

Fig. 2. Decaffeination of coffee beans using supercritical CO₂. MeCl₂ refers to methylene chloride.

Market for Beverage Carbonation

- Dominant use of CO₂ in the food industry
- Solution of carbon dioxide gas in liquid water

- Why?
- Creates "bubbly effect"
- Acts as a preservative

Reference: at end of presentation

Carbonation Process

 Carbonator or Saturator used to carbonate water

 Carbonated water mixed with syrups and additives

Cryogenic Freezing

- Defined as freezing at -75F or below.
- CO₂ injected as high pressure liquid
- Instantly expands into gas and tiny solid particles called "snow"
- Solids are driven into surface of the food
- The refrigeration effect occurs due to the latent heat of sublimation

Cryogenic Freezing vs. Mechanical Freezing

	Cryogenic Freezing	Mechanical Freezing
Investment Costs	Lower cost of capital equipment and simpler, inexpensive installation.	Higher cost of capital equipment and complex and costly installation.
Operating Costs	Higher energy cost with liquid nitrogen or carbon dioxide as energy source.	Generally lower energy cost.
Maintenance Costs	Low: • High uptime • Low maintenance requirements • Reduced cleaning requirements	 High: All parts of a mechanical refrigeration system consisting of three major pieces: high horse-power compressor, condenser, evaporator, and refrigerant storage must be inspected annually. Ammonia refrigeration systems with 10,000 pounds or more of ammonia are a covered process subject to the requirements of the OSHA Process Safety Management Standard (PSM) 1910.119.
Freezing Temperatures	Typically, -160°F or lower for Liquid N_2 and -80°F for liquid CO $_2.$	Typically -30°F
Food Quality	Rapid freezing reduces dehydration loss to less than 1%, thus preserving texture and flavor. Product does not stick to belt.	Slower freezing, up to 3 to 4 times longer than cryogenic freezing, can result in surface dehydration and weight loss and does not allow the successful preparation of Individually Quick Frozen (IQF) products.
Environmental Considerations	Environmentally friendly way of freezing food.	Ammonia is a great refrigerant but it is highly toxic.

Reference: at end of presentation

CO₂ Water Treatment: pH Control

• CO₂ is inert & non-corrosive

 Gradual pH level changes vs. rapid strong acid changes Secondary products are safe for the environment vs. mineral acids

Summary

• Abundant source of CO₂ in atmosphere

- Various uses for CO₂
- All greener methods than current methods
 - Readily available
 - No hazardous byproducts during usage
 - Can be used with existing systems and materials

References

Supercritical Fluids & Decaffeination

- "Supercritical CO2." YouTube. Web. 21 Apr. 2014. https://www.youtube.com/watch?v=P9EftqFYaHg.
- What Is Supercritical Carbon Dioxide? Applied Separations, Inc., 5 Aug. 2010. Web. 21 Apr. 2015.
- "Pure Component Properties" (queriable database). Chemical Engineering Research Information Center.
- "Tetrachloroethylene (data page)." Wikipedia. Wikimedia Foundation. Web. 21 Apr. 2015
- "Venus." Wikipedia. Wikimedia Foundation. Web. 21 Apr. 2015.
- Goldschein, Eric. "11 Incredible Facts About The Global Coffee Industry." *Business Insider*. Business Insider, Inc, 14 Nov. 2011. Web. 21 Apr. 2015.
- "Caffeine." Wikipedia. Wikimedia Foundation. Web. 21 Apr. 2015.
- "Decaffeination." International Coffee Organization. Web. 21 Apr. 2015.
- Viere, T.; von Enden, J.; Schaltegger, S.: Life Cycle and Supply Chain Information in Environmental Management Accounting: A Coffee Case Study. In *Environmental Management Accounting and Supply Chain Management*; Burritt, R., Schaltegger, S., Bennett, M., Pohjola, T., Csutora, M., Eds.; Eco-Efficiency in Industry and Science; Springer Netherlands, 2011; Vol. 27; pp 23-40.
- Brennecke, J. F.; Stadtherr, M. A.: A course in environmentally conscious chemical process engineering. In *Computers & Chemical Engineering*, 2002; Vol. 26; Iss. 2;pp 307-318.
- "Images For Supercritical Co2 Phase Diagram." Web. 21 Apr. 2015. http://imgkid.com/supercritical-co2-phase-diagram.shtml.

Cryogenic Freezing & Carbonation

 Google Books, Carbon Dioxide Recovery and Utilization http://books.google.com/books?hl=en&lr=&id=fjqjPWnwTO4C&oi=fnd&pg=PP11&dq=co2+utilization+in+ food+industry&ots=e_RFI_X2jz&sig=6_poBxRsqpl8pEA4k0enkUYRoII#v=onepage&q&f=true (accessed May 1, 2015).

References (cont.)

- McLafferty, Clair. Mental Floss,. Why Does Carbonation Make Drinks Taste Good? http://mentalfloss.com/article/56540/why-does-carbonation-make-drinks-taste-good (accessed May 1, 2015).
- Rushing, S. Carbon dioxide and the food processing sector | News | gasworld.com http://www.gasworld.com/carbon-dioxide-and-the-food-processing-sector/5065.article (accessed May 1, 2015).
- Matheson Gas, Cryogenic vs. Mechanical Food Freezing https://www.mathesongas.com/industrialgas/pdfs/1914FoodFreezTB415.pdf (accessed May 1, 2015).
- Cesgroup.com,. Refrigerated cooling system mechanical freezing http://www.cesgroup.com/en/education/refrigerated-cooling-system-mechanical-freezing (accessed May 1, 2015).
- Cryofoods.com,. Cryogenic India http://www.cryofoods.com/what-is-cryogenic-the-process.asp (accessed May 1, 2015).
- Cesgroup.com,. Cryogenic Freezing Systems (e.g. IQF freezer) http://www.cesgroup.com/en/education/cryogenic-freezing-systems-IQF-freezer (accessed May 1, 2015).
- Cryogenicsociety.org, Food Processing: A Cryo Central resource from the CSA http://www.cryogenicsociety.org/resources/cryo_central/food_processing/ (accessed May 1, 2015).
- Soda Dispensers,. Soda Fast Carbonators: Installation/Instructions Manual http://sodadispensers.com/tdever/Pdf%20Files/International%20Carbonic%20Soda%20Fast.pdf (accessed May 1, 2015).

References (cont.)

Water Treatment & CO2 Usage Summary

- Brinckerhoff, P. Accelerating the Uptake of CCS: Industrial Use Capture of Carbon Dioxide http://www.globalccsinstitute.com/sites/www.globalccsinstitute.com/files/publications/14026/accele rating-uptake-ccs-industrial-use-captured-carbon-dioxide.pdf (accessed May 1, 2015).
- Sciencedirect.com,. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts http://www.sciencedirect.com/science/article/pii/S2212982014000626 (accessed May 1, 2015).
- Theenergycollective.com,. Carbon Dioxide and Recycling Use | The Energy Collective http://theenergycollective.com/ed-dodge/341971/carbon-dioxide-resource-not-waste-product (accessed May 1, 2015).
- Utilization, J. Journal of CO2 Utilization http://www.journals.elsevier.com/journal-of-co2-utilization/ (accessed May 1, 2015).